微粒シラスバルーン-石英-アルミナセメント系磁器素地の開発(2) - 押出成形と铸込み成形による成型法の検討-

神尾 典1・木村 邦夫2

1ケイテック研究所(元九州工業技術研究所),841-0201 佐賀県基山町小倉 1011-23 2產業技術総合研究所 基礎素材研究部門, 841-0052 佐賀県鳥栖市宿町 807-1

1. はじめに

前報では、九州工業技術研究所(現産業技術総 合研究所九州センター)で開発された可塑性粘土 原料を全く用いない長石系原料-石英-アルミナ セメント系磁器素地の長石系原料を微粒シラスバ ルーンに置き換え,軽量で高強度を有する磁器素 地の開発を目的とし、 プレス成形による最適配合 割合・焼成条件などの検討を行った結果について 報告した。ここでは種々の形状の製品開発を目的 に、第4成分の添加も検討しながら、押出成形を 主に、鋳込み成形などの成形法について検討を行 った結果を報告する。

2. 実験方法

2.1 試料

微粒シラスバルーンは、(株)アクシーズケミカ ルの MSB-3011 と SC-50. (株)シラックスウのシ ラックス SFB-101 と SFB-201, 三機化工建設(株) のサンキライト Y04 を用いた。前報では、水中 に沈降した沈降物を用いたが、ここでは、コスト

アップを避けるためにそのまま用いた。配合に用 いた石英およびアルミナセメントは前報と同じも のを用いた。また、第4成分として蛙目粘土、押 出成形用可塑付与剤としてメトローズ(信越化学 工業(株)SHV-PF)を用いた。 上記5種類の試料 の粒度分布を図1に、密度と平均粒径を表1に示 す。また、これらの試料と、第4成分として用い た蛙目粘土の化学組成を表2に示す。

図1 試料の粒度分布

表1 試料の密度と平均粒径								
試料名	ゆるみ嵩密度	タップ嵩密度	粒子密度	平均粒径				
	(g/cm3)	(g/cm3)	(g/cm3)	(mm)				
MSB-3011	0.20	0.27	0.83	24.5				
SC-50	0.26	0.34	1.17	24.0				
SFB-101	0.17	0.28	1.47	17.2				
SFB-201	0.15	0.25	1.49	17.3				
Y04	0.28	0.40	1.15	20.2				

表 2 試料の化字組成(wt%)										
	SiO2	TiO2	Al2O3	Fe2O3	CaO	MgO	Na2O	K2O	lg.loss	Total
蛙目粘土	50.08	-	34.85	0.43	0.33	0.48	0.42	0.81	12.52	99.92
MSB-3011	73.40	0.36	14.81	1.98	1.08	0.80	3.62	2.88	0.79	99.72
SC-50	72.25	0.37	14.89	2.06	1.18	0.79	3.63	2.80	1.73	99.69
SFB-101	72.89	0.35	14.87	2.19	1.24	0.78	3.68	2.74	0.75	99.51
SFB-201	72.73	0.37	14.85	2.23	1.30	0.77	3.60	2.77	0.87	99.50
Y04	74.78	0.36	14.45	2.34	1.33	0.85	3.43	1.53	0.65	99.72

2.2 押出成形の試料配合と作成条件

微粒シラスバルーン:石英:アルミナセメント
比(重量比)は 40:40:20, 30:50:20, 20:60:20 とし
た。また第4成分の蛙目粘土の添加効果を調べる
ため一部の試料配合について微粒シラスバルーン
:石英:蛙目粘土:アルミナセメント比を
30:25:25:20 で行った。それらの実験は図2の行
程に従って行った。

図2 実験工程

なお,混練は宮崎鉄工社製押出成形機の下段押 出スクリューだけを使用し,内径 20mm ダイス を取り付けて 2 ~ 4 回通して行った。使用した押 出成形機の仕様は,上段サイドスクリュー(パグ ミル)径 30mm × 2,上段スクリュー径 30mm, 脱気室下段食込ローラー径 50mm 溝付き形,下 段押出スクリュー径 30mm から成り,断面 21 × 14mm 中実ダイスを取り付けて成形した。

2.3 物性測定

養生試料および焼成試料のかさ密度は, 試料寸 法から算出される容積と重量から算出した。曲げ 強度は, オートグラフを用いスパン長さ 60mm の3点曲げ試験法により測定した。焼成収縮率は 試料長の線収縮率とし, 吸水率は 24 時間水中に 保持し, その重量変化から吸水率を算出した。

3. 結果と考察

3.1 押出成形性について

押出成形における各種試料の配合比と実験の結 果を**表3**に示す。押出成形法は,異形断面形状の 製品を任意に選択ができ,デザイン性に優れ,か つ連続生産が可能などの特徴を持っている。しか し,その一方では成形技術について未解決な点が 多く,とくに成形に重要な因子となる原料の可塑 性の付与が不可欠である。また,パーライトやシ ラスバルーンなどの軽量発泡体を素材として用い

実験番号	試料	SB	QU	CL	AC	MC	WA	W / C	成形圧力	成形速度
		(%)	(%)	(%)	(%)	(%)	(%)	(%)	(kg/cm 2)	(cm/min)
1	M SB-3011	40	40	0	20	1	43	215	15-20	30-27
2	M SB-3011	30	50	0	20	1	40	200	18-20	28-26
2A	M SB-3011	30	25	25	20	0	42	210	28-30	18-17
3	M SB-3011	20	60	0	20	1	37	185	15-17	30-22
10	S C -50	40	40	0	20	1	43	215	7-12	27-25
11	S C -50	30	50	0	20	1	38	190	10-13	26-25
12	S C -50	20	60	0	20	1	34	170	8-10	23-21
4	S F B - 101	40	40	0	20	1	44	220	10-15	22-20
5	S F B - 101	30	50	0	20	1	40	200	15-17	26-25
5A	SFB-101	30	25	25	20	0	60	300	12	22-24
6	S F B - 101	20	60	0	20	1	37	185	10-17	28-27
7	SFB-201	40	40	0	20	1	45	225	10-15	31-28
8	SFB-201	30	50	0	20	1	41	205	15-18	21-20
9	SFB-201	20	60	0	20	1	38	190	8-15	28-21
13	Y 0 4	40	40	0	20	1	40	200	20-25	15-12
14	Y 0 4	30	50	0	20	1	39	195	20-24	22-15
14A	Y 04	30	25	25	20	0	43	215	40-43	17-15
15	Y 0 4	20	60	0	20	1	37	185	13-20	20-18

表3 押出成形における各種試料の配合比と実験の結果

た場合,成形機内部におけるスクリューとの剪断 力などによって,軽量素材が破損しやすく,刻々 と変化する機内の圧力に耐えきれないと,原料の 組成が変化して,製品に亀裂が生じたり,閉塞を 起こすなど,押出成形性は最悪な状態となる。従 って,破損を低減するためには微粒のシラスバル ーンを用い,さらに,物性の異なる各種のバルー ンやその配合比に最適な可塑付与剤と混水量を選 択する必要がある。表3はこのようにして調整し, 実験を行ったものの押出成形圧力と成形速度の関 係である。微粒シラスバルーンの種類によって押 出圧力に多少の差が生ずるが,押出速度は変化が 小さく,成形性は良好であった。

また,着目すべき点は,石英(QU)の使用量を 第4成分の蛙目粘土(CL)に 1/2 置き変えること によって,若干,成形圧力が上昇するが,可塑性 付与剤のメトロース(MC)を用いずに押出成形が 可能であることが認められたことである。このこ とは,経済的効果として大きく評価できると考え られる。

3.2 成形体のかさ密度について

各種試料の配合比と成形体の焼成前のかさ密度 と 1300 ℃で 1 時間, 4 時間焼成後のかさ密度の 関係を図4, 5に示す。なお, 2 時間焼成結果は, 次項以降の物性も併せ,ほぼ 1 時間,4 時間焼成 の中間の値を示した。

それぞれ微粒シラスバルーンの性質や配合比が 異なるため,かさ密度の差も開きがある。まず, 焼成前のかさ密度に注目すると,微粒シラスバル

図5 配合比と焼成前後の嵩密度(1300 °C, 4h)

ーンの配合比が 20%から 30%においては若干低 下するが,40%に増加すると急激に減少する傾向 が認められる。この密度の低下は,微粒シラスバ ルーンが破壊されていないことを示しているもの と考えられる。一方,焼成後のかさ密度は焼成時 間が長くなると大きく上昇している。また,4 時 間焼成では 30%,40%配合比での密度の差は変わ らず一定となっている。このことは,焼結反応が 進んでいることを示しているもので,微粒シラス バルーンの配合に最適量があるものと考えられる。 また,蛙目粘土を配合した成形体のかさ密度は, 前記と同様の傾向であるが3時間焼成をピークに 4 時間焼成での密度の増加は認められなかった。

3.3 成形体の曲げ強度について

各種試料の配合比と成形体の焼成前の曲げ強度 と 1300 ℃で 1 時間,4 時間焼成後の曲げ強度の 関係を図6,7に示す。

一般に,曲げ強度とかさ密度は相関性が明確で あり,かさ密度が大きいと曲げ強度も高い。かさ 密度と同様な結果が得られている。若干違いが見 られたのは,焼成前の成形体の曲げ強度は微粒シ ラスバルーンの配合比 20%,30%,40%でほとん ど差がない。即ち,40%配合ではかさ密度は低下 するが曲げ強度の低下はあまり認められない点, また,蛙目粘土を配合した成形体の曲げ強度は, かさ密度が大きく曲げ強度が小さく,比曲げ強度 としての評価は低いことが解った。それぞれの曲 げ強度差はスタート原料である微粒シラスバルー ンの物性が影響しているものと考えられる。

図6 配合比と焼成前後の曲げ強度(1300 ℃,1h)

図7 配合比と焼成前後の曲げ強度(1300 ℃,4h)

3.4 成形体の収縮率について

各種試料の配合比と成形体の1300 ℃で1,4時間の焼成による収縮率を図8,9に示す。

微粒シラスバルーンの配合比の増加と共に線収 縮率は増加の傾向を示している。1300 ℃ 1 時間 焼成の場合は各種の微粒シラスバルーンの物性に あまり影響することなく収縮が進むが,4 時間焼 成では,収縮率は急激に増大し,微粒シラスバル ーンの物性差に起因していることが解る。これは, 押出成型時の圧密化が弱く,軽量発泡体を用いた ため焼結による収縮が大きくなるためと思われる。

また,蛙目粘土を用いた成形体の収縮率は1時 間焼成によって,収縮率は2倍に達している。即 ち,他よりも急速に焼結が進むことを示している。

3.5 成形体の吸水率について

各種試料の配合比を焼成した成形体の吸水率を 図10,11に示す。

図8 配合比と収縮率との関係(1300 °C, 1h)

図9 配合比と収縮率との関係(1300 °C, 4h)

1300 ℃,1 時間焼成した成形体(図 10) は微 粒シラスバルーンの配合比による差はあまり認め られず,いずれも焼結が進んでいないことが解る。 4 時間と焼成時間が長くなると焼結が進み,吸水 率が0近くまで低下することが認められた。

図10 配合比と吸水率との関係(1300 °C, 1h)

図15 配合比と吸水率との関係(1300 °C, 4h)

以上のように,これまでのかさ密度と曲げ強度 の関係,また収縮率と吸水率やそれぞれの関係は 焼成時間と密接な相関性があり,それらの条件を 見い出すことができた。

3.6 鋳込み成形について

石膏型を用いた鋳込み成形を試みた。試料は押 出成形に用いたものと同様で,蛙目粘土の配合を 変えて行った。その結果を**写真1,2**に示す。種 々水溶液の調整を試みたが,写真1は蛙目粘土の みで,当然脱型が容易であるが,本実験組成では 写真2のようにいずれの配合でも,石膏型によく 着肉するが脱水時に亀裂が生じる。また積層に鋳 込むと亀裂は生じないが脱型困難となり,さらに 蒸気養生で固化した後でも強固に密着し,脱型性 は同様であった。その原因としては,素地の粒度 分布や素地の可塑性,乾燥収縮などの要因が大き く影響を及ぼしているものと考えられる。

写真3はローラーマシーンと同様の鋳込みを応 用した方法であるが,石膏型を用いて,同じ配合 で試料の含水率を 50 ~ 70%に調整し,混練して 型に押した。脱型は容易であった。

4. まとめ

- 1)押出成形・養生後,1300 ℃ 4 時間の焼成で かさ密度約 2.0g/cm3,曲げ強度約 40MPa,収 縮率約 20%,吸水率 0%の成型体が得られた。
- 2)第4成分の蛙目粘土の配合は,得られる成形 体の物性の改善よりも押出成形の可塑付与剤と して 25%以上配合し,石英と置き替えること

写真1 蛙目粘土の鋳込み成形

写真3 型押し成形

により経済効果が期待できることが解った。 3)鋳込み成形では,型押し成形を応用すること で解決したが,今後の研究課題が残された。

謝 辞

本研究の試料を提供して頂いた(株)アクシーズ ケミカル,(株)シラックスウおよび三機化工建設 (株),信越化学工業(株)に対し,深く感謝の意を 表します。また,本研究を遂行するに当たり,鹿 児島県資源開発協議会から研究助成を受けた。記 して謝意を表します。