超微粒シラスバルーンの開発

1. はじめに

火山ガラス質堆積物(シラス等)中の火山ガラ スを短時間焼成して得られる微細中空ガラス球状 体(シラスバルーン)は、各社独自の製造技術の 開発が進められた結果、それぞれ特徴ある製品が 生産されているが、最も微粒の製品は20 μ m程度 である。天然原料に含まれている微粒子の含有割 合は少なく(今回用いたシラスの場合、10 μ m以 下は約3wt%)、超微粒シラスバルーンを製造する ためには、必然的に粉砕・粒度調整を行う必要が ある。しかし、10 μ m以下に粉砕した粒子は、現 状の装置では製造することが困難である。

自然粒子の表面層は、風化作用により、Na+イ オンが内部に比べて少なく、H+イオンは逆に多く なっている¹⁾。この風化表面層は、加熱発泡に有 効に作用している¹⁾。つまり、内部よりも軟化温 度の高い風化表面層は、表面に硬い層を形成し、 加熱による水分の粒子外への拡散を抑え、発泡体 を球形に保ち、同時に発泡体相互の融着を防止す る。微粉砕すると、風化表面層が破壊されること と、微粒子になるほど加熱による水分の粒子外へ の拡散速度が大きくなることとの相乗効果で、ガ ラスの軟化時まで残存すべき水分が不足する。

そこで、高温高圧の水の存在のもとに行われる 水熱反応を利用して、ガラス中の水分を増加させ、 同時に風化表面層と同様の効果を有する表面層を 生成させることを試みた。この水熱処理試料を焼 成することにより、超微粒シラスバルーンが得ら れたので、以下に概要を示す。なお、出発原料と しては、鹿児島県吉田町産の吉田シラスをボール ミル粉砕し、水簸(粒子の水中沈降速度の差によ る分離)により5~10μmを回収した試料を用いた。

2. 自然粒子と粉砕粒子との差

比較試料の自然粒子,上記の出発原料,同時に 得られた5μm以下の粉砕粒子のDTG(加熱減量の 微分値)曲線を図1(Tは総加熱減量(wt%))に 示す。加熱減量のほとんどが水分である。加熱発 泡には,高温度まで保持される水分(ガラス網目

九州工業技術試験所 木村邦夫

構造内に不規則に分布しているOH基)に強く影響 を受ける。550℃付近の小さなピークの大きさは, 上記の風化表面層,つまりガラス粒子表面からの 風化による粘土(カオリン鉱物)化の程度と関係 する¹⁾。自然粒子のこのピークの大きさは,出発 原料より大きく,5 μ m以下の粉砕物とほぼ等しい。 また,同試料の粉末X線回折図でも同様の傾向が 認められた。これらのことから,出発原料とした 5~10 μ mの粉砕粒子は,粉砕により風化表面層の ほとんどが破壊され,その表面は,内部と同じ組 成を有し,また,元来の風化表面層のほとんどは, 5 μ m以下の粉砕物中に濃縮されていると考えらる。

図1 自然粒子と粉砕粒子のDTG曲線

3. 水熱処理

水熱処理は,内容積70m1の密閉容器を用いて, 表1に示す条件で行った。表中,*印は他要因を 変化させたときの固定値を示す。圧力は,規定温 度における水蒸気圧(150℃で約0.5MPa,180℃で 約1MPa,200℃で約1.5MPa)とした。

塩酸濃度を変化させ,他の要因は固定値として 水熱処理した試料のDTG曲線を図2に示す。出発 原料(図1の粉砕粒子)に比べ,300℃付近のブロ

表1 水熱処理の実験条件

塩酸濃度	(%)	0, 0.5, 1, 2*, 5, 10						
溶液/試料比	(m1/g)	1.5, 4, 10*						
温度	(°C)	150, 180, 200*						
保持時間	(h)	24, 48, 72, 120*, 168						

ードなピークが大きくなり,同時に総加熱減量も 増加している。また,発泡に有効に作用すると考 えられる600℃以上の加熱減量値(有効水分)は, 水熱処理温度が高いほど多くなり,塩酸濃度が高 くなるほどわずかに多くなる傾向が認められた。 他の要因を変化させた試料では,この有効水分は, 水熱処理時間48h以上,溶液/試料量比4ml/g以 上でほぼ同程度に増加した。これらの水熱処理に よる有効水分の増加現象は,Na⁺,K⁺等の溶脱し 易いイオンの溶出に伴う,H⁺イオンとの交換反応 (加水)に起因し,ガラス網目構造内に不規則に分 布している0H基が増加したためと推察される。一 方,大気圧下100℃の湯煎上での処理では,有効 水分の増加は,ほとんど認められなかった。

550℃付近の小さなピークは、塩酸濃度が0.5% と1%で認められる。これは、長石からカオリン 鉱物が生成する²⁾場合と同様に、シラスガラスか ら、カオリン鉱物が生成したことによると考えら れる。しかし、このピークは小さいことから、カ オリン鉱物の生成量は少なく、表面からわずかに 進行している程度であると推察される。長石の場 合²⁾と同様に、塩酸濃度が2%以上では、このピ ークは見られないことから、シラスガラスからの カオリン鉱物の生成は無いと考えられる。しかし、 天然ガラス特有の脱水パターンを示していること から、溶脱し易いイオンの粒子表面からの溶出と 加水は進行していると推察される。

図2 水熱処理試料のDTG曲線

DTG測定後の試料では,出発原料の色と水熱処 理試料の色とでは大きな差が認められた。1000℃ まで加熱した出発原料の白色度は,加熱前の85か ら53に低下した。これは,表面層のFe²⁺イオンが 酸化反応により,Fe³⁺イオンに変化したことに起 因すると推察される。しかし,2%以上の塩酸濃 度で水熱処理した試料の加熱後の白色度は,約85 と変化なかった。これらのことは,水熱処理した 試料を用いて,シラスバルーン製造のための加熱 処理を酸化雰囲気で行っても白色度の低下がなく, 白色のシラスバルーンが得られることを示してい る。一方,湯煎上での処理では70弱となり,白色 度に関しては,効果が認められた。

なお,固定条件で水熱処理した試料を再度粉砕 し,同様の加熱処理を行ったところ,白色度は82 と低下した。このことから,Fe²⁺イオンの溶出は, 表面層付近だけと考えられ,内部とは異なる表面 層が生成していると推察される。

4. 加熱発泡

加熱発泡には図3に示す装置を用いた。電磁振動により試料を筒底部から排出させ、自然落下状態で熱処理した。炉内最高温度は1000[°]C一定とした。 試料供給量は、0.1~0.2g/minであった。空気の対流が無く、試料が完全分散状態にあると仮定すれば、最高温度までの到達時間の計算値は、 5μ m粒子で110秒、10 μ m粒子で27秒となる。

熱処理試料は,水中で超音波分散させた後,遠 心分離器で浮揚物と沈降物とを分離した。浮揚物 をシラスバルーンとみなし,回収率を求めた。

水熱処理における各要因と超微粒シラスバルー ンの回収率との関係を図4に示す。図4(A)によ ると,回収率は,塩酸濃度が2%の時に最大とな り,その値は,出発原料の約10倍の19wt%である。 高濃度溶液を用いた水熱処理で回収率が低下する 理由として,表面層の厚さが厚くなり過ぎ,加熱 発泡を抑制していると考えられる。なお,出発原 料の加熱発泡は,多量の試料が炉壁に融着し困難 であったが,塩酸濃度を1%以上とした水熱処理 試料は,ほとんど融着なしで加熱発泡処理を行う ことができた。

図4(B)及び(C)によると,回収率は,溶液/ 試料量比が大きいほど多くなり,処理時間が120h で最大となっている。工業化を考えた場合,1回 に処理できる量が多いほど,処理時間も短いほど 有利であるが,図4(B)の結果は,溶液/試料量 比の値が大きいほど,換言すれば,1回の処理量 が少ないほど回収率は大きくなっている。

一方,図4(D)に示すように,処理圧力が高い ほど回収率も高くなった。しかし,工業化を考え た場合,処理温度を200℃以上にすることは,処 理圧力が1.5MPa以上となり,装置構造上困難と思 われ,この温度・圧力が限界と考えられる。

5. 超微粒シラスバルーンの物性

回収率の最も高い表1の固定条件で水熱処理し た試料から得られた超微粒シラスバルーンについ て,物性測定を行った。化学分析値を表2(2)に 示す。同表に示した出発原料(1)に比べ,Na20と K 20の含有割合は非常に少なく,Fe203,Ca0は若 干少ない。このことは,Na⁺,K⁺等の溶脱し易い イオンの粒子表面からの溶出は内部まで進行し, Ca²⁺,Fe²⁺等のイオンの溶出は表面層だけで,内 部まで進行していないことを示している。

顕微鏡写真を図5に示す。なお、粒子径は出発 原料と大差なく若干大きくなった程度である。ま た、沈降粒子中にも球状発泡体が多数見られたが、 この粒子の密度は1g/cm³より僅かに大きい程度と 考えられ、熱処理条件を選べば、回収率がさらに 上昇すると思われた。

他の物性の測定結果を表3(A)に示す。比較値 として,現在製造されているシラスバルーンの値 (B)も示した。粒子密度の値は比較値の範囲に入 っているが,かさ密度及び強度値(8MPa静水圧非 破壊率)は比較値に比べ大きい。これは,従来の シラスバルーンに比べ微粒のため,粒径に対し殻 厚が大きくなっているためと思われる。また,白 色度の値は比較値に比べ大きい。このことは,前 記したように,表面層だけのFe²⁺イオンの溶脱で, 白色度の低下が防止できることを示している。

	表2 化学分析值						(wt%)	
	Si02	A1203	$Fe_{\rm 2}0_{\rm 3}$	Mg0	Ca0	Na 20	K20	Ig.1.
1	73.2	12.0	1.6	0.4	1.6	2.7	3.3	5.0
2	79.7	12.7	1.2	0.4	1.5	0.1	1.4	1.9

図5 超微粒シラスバルーンの電子顕微鏡写真

表3 シラスバルーンの物性

	平均粒径	かさ密度	粒子密度	強 度	白色度
	(μm)	(g/cm ³)	(g/cm ³)	(wt%)	(-)
А	12.5	0.4	0.8	94	88
В	30~310	0.1~0.4	0.7~1.2	$5 \sim 49$	72~83

文 献

1) 木村邦夫·浜野健也:窯業協会誌 84 [2] 70-75(1976)

2) 木村邦夫・立山 博:セラミックス論文誌 97 [4] 439-446(1989)